Nano-plasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression

نویسنده

  • Deepak Srivastava
چکیده

Nano-plasticity of thin single-wall carbon nanotubes under uniaxial compression is investigated through generalized tight-binding molecular dynamics (GTBMD) and ab-initio electronic structure methods. A novel mechanism of nano-plasticity of carbon nanotubes under uniaxial compression is observed in which bonding geometry collapses from a graphitic (sp 2) to a localized diamond like (sp 3) reconstruction. The computed critical stress (_ 153 G Pa) and the shape of the resulting plastic deformation is in good agreement with recent experimental observation of collapse and fracture of compressed carbon nanotubes in polymer composites. Typeset using REVTE X https://ntrs.nasa.gov/search.jsp?R=20000085898 2017-11-06T20:49:25+00:00Z

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes

In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...

متن کامل

Synergy among binary (MWNT, SLG) nano-carbons in polymer nano-composites: a Raman study.

Load transfer and mechanical strength of reinforced polymers are fundamental to developing advanced composites. This paper demonstrates enhanced load transfer and mechanical strength due to synergistic effects in binary mixtures of nano-carbon/polymer composites. Different compositional mixtures (always 1 wt% total) of multi-wall carbon nanotubes (MWNTs) and single-layer graphene (SLG) were mix...

متن کامل

Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain

We report structural, elastic, and electronic properties of selected, deformed, single-wall carbon nanotubes under uniaxial strain. We utilized a generalized gradient approximation potential of density functional theory and the linear combination of atomic orbital formalism. We discuss bond-lengths, tubule radii, and the band gaps as functions of tension and compression strain for carbon nanotu...

متن کامل

Strain tuning of the photocurrent spectrum in single-wall carbon nanotubes.

The effect of uniaxial strain on the photocurrent spectrum of semiconducting single-wall carbon nanotubes is measured. The energy of the lowest-lying free electron transition is observed to shift with strain as predicted by a simple noninteracting model. The higher-order transitions also shift with strain, but being excitonic, their strain dependence differs from the predictions for the free ca...

متن کامل

Mechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams

Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999